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Abstract

This paper provides an explanation for escalating prices and fines based on a unified
analytical framework that nests monopoly pricing and optimal law enforcement.
We show that escalation emerges as an optimal outcome if the principal (i) lacks
commitment ability, and (ii) gives less than full weight to agent benefits. Escalation
is driven by decreasing transfers for non-active agents rather than increasing transfers
for active agents. Some forward-looking agents then strategically delay their activity,
which drives a wedge between the optimal static transfer and the benefit of an
indifferent agent. This wedge is the source of escalation.
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1 Introduction

Escalating fines for repeat offenders are ubiquitous, but they pose a serious challenge
for the theory of optimal law enforcement. Why should the fine for a given offense
increase with the number of previously detected offenses? Escalating pricing schemes
for repeat customers (e.g., loyal insurance buyers) pose a similar challenge. Why should
loyal customers pay higher prices than new ones? Theory struggles with answering these
questions when the economic environment does not change over timeE]

At first glance, there appears to be a simple explanation for escalation: The principal
infers from observed past behavior that active agents have higher unobserved benefits
than non-active agents and chooses escalating transfers for previously active agents to
extract (part of) these higher benefits. However, this explanation is not correct. In a fixed
economic environment it is not optimal to increase the transfers for active agents due to
their positive selection (Tirole, 2016)). This paper proposes an alternative explanation for
escalation that builds on related work in the field of dynamic price discrimination.

We develop a unified analytical framework that nests (among other settings) behavior-
based monopoly pricing (Armstrong, 2006} Fudenberg and Villas-Boas,|[2007) and optimal
law enforcement (Becker, 1968 |Polinsky and Shavell, 2007) with history-based fines as
special cases. Specifically, we allow the objective function of the principal to depend
on the weight that the principal gives to agent benefits. The principal thus effectively
maximizes monopoly profit if she gives no weight to agent benefits, while she maximizes
standard welfare if she gives full weight to agent benefits. In addition, we allow for
imperfect detection of agent activity by the principal to accommodate the canonical model
of optimal law enforcement. Note that the unified framework assumes that a monetary
fine may be viewed as a price (Gneezy and Rustichini, 2000)EI

The analysis of the unified framework reveals that, contrary to what intuition might
suggest, escalation (if any) is driven by decreasing transfers for non-active agents rather
than increasing transfers for active agents. The result obtains from the following logic:
If the principal (i) cannot commit to future transfers, and (ii) gives less than full weight
to agent benefits, she has an incentive to decrease the transfer for non-active agents,

thereby generating additional transfer payments from previously non-active agents. Some

'In a recent interview on www.thepolitic.org (August 4, 2018), Avinash Dixit suggests that the
formal modelling of graduated punishments is “one of those unresolved research problems.”

2This is a fairly natural assumption: As will become clear below, the monopoly pricing model and the
canonical model of optimal law enforcement are formally equivalent if the principal gives no weight to
agent benefits and perfectly detects agent activity.


www.thepolitic.org

forward-looking agents will then strategically delay their activity in order to benefit from
the lower transfer for non-active agents in the future. This strategic delay drives a wedge
between the optimal (expected) static transfer and the (cutoff) benefit of an agent that
is indifferent between being active and non-active. This wedge causes the escalation of
transfers for active agents. If there is no such wedge, the positive selection of active agents
dictates that escalation cannot be optimal.

We develop our line of argument in a simple two-period model. We assume that agent
benefits are continuously distributed and fixed over time, and we suppose that the principal
and agents share the same discount factor. In period 1, forward-looking agents decide
whether or not to engage in the activity, and both active and non-active agents may choose
to be active in period 2. The principal detects agent activity with exogenous probabilityE]
This implies that, in period 2, the principal can distinguish two groups of agents with
different histories: active agents and non-active agents, where the latter were either indeed
not active in period 1 (‘true’ non-active agents) or were active but not detected in period 1
(‘false’ non-active agents). The principal can set three transfers: The transfer in period 1,
the transfer for (true and false) non-active agents in period 2, and the transfer for active
agents in period 2.

We derive three key results. First, if the principal can commit to future transfers, it is
never optimal to choose escalating transfers for active agents. This finding is reminiscent
of the classic result that it is optimal not to discriminate prices with commitment when
types are fixed (Stokey, 1979; Hart and Tirolel |[1988};|/Acquisti and Varian, 2005; Fudenberg
and Villas-Boas, 2007). Specifically, we show that with commitment the principal can do
no better than set all transfers equal to the optimal static transfer. It is worth noting that
setting static transfers is not uniquely optimal: falling transfers for active agents may also
be optimal. Second, optimal transfers for active agents escalate if and only if the principal
lacks commitment ability and gives less than full weight to agent benefits. In this case,
the principal cannot resist the temptation to lower the transfer for non-active agents to
generate additional transfer payments. Third, if the principal gives full weight to agent
benefits, she effectively maximizes standard social welfare and therefore sets all expected
transfers equal to the social cost of the activity, irrespective of commitment ability. In
sum, escalation is thus explained by the effect of Coasian dynamics (Coase, |1972; Hart
and Tirole, [1988)).

3That is, law enforcement may be uncertain (Polinsky and Shavell, 2007), or consumption may be
subject to payment evasion (Buehler et al., [2017). Examples for payment evasion include digital piracy,
shoplifting, fare dodging, etc.



Our paper makes a twofold contribution. First, we contribute to the literature on
behavior-based price discrimination by adding two novel ingredients to the analysis. The
first ingredient is imperfect (probabilistic) customer recognition, which allows us to nest
the analysis of optimal law enforcement. The paper closest to ours is (Conitzer et al.
(2012)), which studies deterministic customer recognition in a two-period model with
repeat purchases. In a recent paper, Belleflamme and Vergote| (2016) study imperfect
customer identification in a monopoly setting without repeated purchases. Our paper is
also related to |Villas-Boas| (2004), which studies a setting in which an infinitely-lived
firm faces overlapping generations of two-period-lived consumers and cannot distinguish
‘young’ from ‘old’ first-time consumers. Our analysis differs from much of the customer
recognition literature in that we consider a continuous type distributionf_r] The second
ingredient is non-profit maximization by the seller. As discussed above, we find that
a welfare-maximizing seller does not want to discriminate prices, irrespective of its
commitment ability. The reason is that the seller can do no better than set all prices equal
to the social cost of consumption. With less weight given to consumer benefits, the seller’s
profit motive kicks in, and prices are optimally being discriminated.

Second, we contribute to the theory of optimal law enforcement (Polinsky and Shavell,
2007) by providing a novel explanation for escalating fines that builds on history-based
fine discrimination in the canonical model. In the spirit of Polinsky and Rubinfeld (1991},
we relax the standard assumption that offender gains are fully credited to welfare, which
has long been criticized on the grounds that it is difficult to see why “illicit” individual
offender gains should add to social welfare (Stigler, |1974; |Lewin and Trumbull, 1990).
But where |Polinsky and Rubinfeld (1991) assume that the “socially-acceptable” gains
of individuals are stochastic, while their “illicit” gains are fixed, we instead allow the
principal to place a weight on offender gains in the welfare function. Our analysis shows
that the standard assumption of giving full credit to offender gains prevents the canonical
model from addressing escalation, as standard welfare maximization forces expected fines
down to the social cost of an offense. By allowing for the partial credit of offender gains,
we examine the role of a “rent-seeking” principal (Garoupa and Klerman, 2002) in a
dynamic framework. Our analysis suggests that dynamic price discrimination offers a
consistent explanation for escalating fines in various settings. It should be clear, though,

that the economic approach to explaining law enforcement practices has its limits: If

“Discrete types may provide another rationale for escalation that is driven by the ability to separate types
in the second period (e.g. |Acquisti and Varian, [2005; Taylor, 2004). With a continuous type distribution
instead, there is no incentive to ratchet up (Freixas et al., |1985) the price for revealed high types, and
escalation is driven by individuals that strategically delay their offense.



the principal has commitment ability or maximizes standard welfare, history-based fine
discrimination cannot explain escalating fines.

Earlier work on optimal law enforcement has suggested alternative explanations to
solve the ‘puzzle’ of escalating fines (see Hylton| (2005) and Miceli| (2013) for useful
surveys). For example, law enforcement may be error-prone, so accidental and real
offenders are more distinguishable when the number of offenses increases (Stigler, 1974
Rubinstein, [1979; (Chu et al., 2000; [Emons| 2007)). Similarly, if repeat offenders learn
how to avoid detection, escalating fines may keep notorious offenders deterred (Baik
and Kim| [2001; |Posner, 2007)E] Moreover, if conviction carries a negative social stigma,
escalating fines may be needed to keep up deterrence for previously convicted offenders
(Rasmusen, 1996} [Funkl 2004} Miceli and Bucci, [2005)). Also, if the authority minimizes
the sum of harm from offenses and the cost of penalization, escalation may be optimal if
the cost of penalization is increasing in the level of fines (Endres and Rundshagen, 2016)).
Finally, escalating fines may be optimal if monitoring is imperfect in the sense that some
agents are falsely identified as active, administering punishment is costly, and agents have
different types (van der Made, 2019). None of these explanations is based on dynamic
price discrimination.

The remainder of the paper is organized as follows. Section [2|introduces the static
version of the analytical framework and derives the optimal transfer. Section [3|studies
optimal transfers in the two-period version of the model, both with and without commit-
ment by the principal. Section []illustrates the analysis with three examples. Section 3]
discusses how the results are affected by changes in the unified setting. Section [6|offers

conclusions and directions for future research.

2 Static Model

We introduce a unified analytical framework that nests monopoly pricing and optimal
law enforcement (Becker, 1968}, Polinsky and Shavell, 2007) as special cases. Consider
a population of agents who obtain the benefit » > 0 from engaging in an activity (i.e.,
purchasing a product or committing an offense) that generates (social or private) cost
¢ > 0. Individual agent benefits are private knowledge and drawn independently from
a distribution with density function z(b) and cumulative distribution function Z(b) on

>Some authors have argued, though, that declining penalty schemes are optimal if law enforcement
becomes more effective in pursuing notorious offenders (e.g. Dana, [2001} [ Mungan, |2009). Similarly, wealth
constraints may make decreasing fines optimal (e.g.[Anderson et al.l 2017)), or lead to falling fines for first
offenses over time, but constant ones for repeat offenses (Polinsky and Shavell, [1998)).
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[b,b], with b > ¢ > b and z(b) > 0 for all b, such that it is inefficient if no agent engages
in the activity. An agent’s activity is detected by the principal (i.e., the seller or the law
enforcement authority) with probability 7 € (0, 1], in which case the agent must pay the
transfer # > 0 to the principal. Agents are risk-neutral, implying that only agents whose
benefit exceeds the expected transfer, b > 7t, engage in the activity.

The principal’s objective function is given by

Qt;e,m,a) = /

Tt

b
(nt —)dZ(b) + & / (b—m)dZ(b), ()

Tt

b

where the first term is the sum of expected transfer payments net of cost, and the second
term is the sum of agent benefits net of expected transfer payments, weighted by the
parameter o € [0, 1]. It is straightforward to see how monopoly pricing and optimal law
enforcement are nested into this framework. First, if a = 0 the principal gives no weight
to agent benefits and the objective function simplifies to Q(¢;¢,7,0) = f,f,(m —c)dZ(b),
which is equivalent to the profit function of a monopolist with unit cost ¢ that sells at
price 7t to a population of consumers with unit demand. Second, if o = 1 the principal
gives full weight to agent benefits and the objective function simplifies to Q(t;e,m, 1) =
f,lr’t(b —c)dZ(b), which is equivalent to the standard welfare function considered in the
canonical model of optimal law enforcement. Third, if & < 1, the principal gives less than
full weight to agent benefits and has an incentive to extract (some of) these benefits via
transfer payments. In the pricing interpretation of the model, it is convenient to think of the
principal as a (state-owned) monopoly that does not focus on pure profit only. In the law
enforcement interpretation, it makes sense to think of the principal as a law enforcement
authority that does not fully credit offender gains to social welfare. Our framework thus
relaxes the standard assumption that illicit offenders gains are fully credited to welfare,
which has long been criticized in the literature on optimal law enforcement (Stigler, [1974;
Lewin and Trumbull, 1990; Polinsky and Shavell, [2007).

Our first result characterizes the optimal static transfer.

Proposition 1 (static transfer). Suppose the objective function Q(t;h, m, o) has a unique

interior maximum for any o € [0,1]. Then, the optimal static transfer satisfies

. ¢ (I=a)l =Z(nt*)]
e o) = T 2(mt*)m

with dt*(c,m, o) /do < 0.

Proposition |1| shows that the optimal static transfer depends on the weight that the
principal gives to agent benfits. If the principal gives no weight to agent benefits (@ = 0),

5



Figure 1: Static model

Notes: The figure illustrates the optimal expected static transfer 7z* (-, ¢¢) in the unified framework with a uniform distribution of
agent benefits and o € {0,1/2,1}. The shaded area indicates the principal’s surplus Q for o0 = 1/2.

the optimal transfer takes the form of a standard monopoly price (adjusted for the detection
probability). If the principal gives less than full weight to agent benefits (@ < 1), the
optimal transfer is smaller than the standard monopoly price, but larger than the welfare-
maximizing transfer ¢/, which emerges if the principal gives full weight to agent gains
(o = 1). In the latter case, the transfer’s only role is to discourage agents with a benefit
below cost (i.e., consumers with valuation below cost or “inefficient” offenders) from
engaging in the activity. The result suggests that it is quite natural to view a fine as a price
(Gneezy and Rustichini, [2000): the optimal fine is formally equivalent to the monopoly
price if the principal gives no weight to agent benefits and perfectly detects agent activity.
Figure [1|illustrates the unified framework with a uniform distribution of agent benefits
and three different values for . The shaded area corresponds to the principal’s surplus if

_1
06—2.

3 Dynamic Model

Consider now a repeated version of the unified framework with two periods. Suppose
that the principal and agents have the same discount factor 6 € (0, 1), and assume that

the principal can choose three transfers t = {r,1,,7,} to be paid by active agents: #| in



period 1, #; in period 2 for previously non-active agents (both true and false), and 7, in
period 2 for previously active agents. Note that the principal can condition the transfers
in period 2 on the detected agent activity in period 1. Finally, assume that agents are
forward-looking and cannot commit to future actions.

Since agents with higher types have higher benefits from being active, the skimming
property (Fudenberg et al.|1985, (Cabral et al.|1999, Tirole 2016) ensures that higher-type
agents become active no later than lower-type agents. Specifically, if a type b is active in a
given period, then so is a higher type b’ > b. To see how the skimming property works in
our setting, observe that for type b to be active in period 1 (x; = 1), the benefit from being
active in period 1 plus the continuation valuation in period 2 must exceed the continuation

valuation in period 2 following a decision to be non-active in period 1 (x; = 0),
b—mt;+38V(b,x; =1)>8V(b,x; =0),

where V (b, x;) denotes the continuation valuation conditional on type b and the activity
decision x; € {0, 1} in period 1. Since type b can always mimic type b’ > b in period 2

(irrespective of activity decisions in period 1), we must have
b'—b>V(b,x))—V(b,x1), x3€{0,1}, (2)

which implies that there exists a unique cutoff b7 (t) that splits the type set into active and

non-active agents in period 1. Similarly, in period 2 we have that 5’ — 7wt > b — 7t and

b' — mty > b — 7h,, so that in each period and each segment there exists a unique cutoff.
We now proceed to characterizing optimal agent behavior for any combination of

transfers that the principal may choose.

Proposition 2 (self-selection). Forward-looking agents optimally condition their activity

on types as follows:
(i) Types b < mmin{t} are never active.

(ii) The cutoff satisfies b} = mt; (“quasi-myopia”) if t;y < min{ty,f»} or to =1tp. Then,
types b > mt| are active in the first period and active again in the second if they
were not detected and b > Ttt, or if they were detected and b > Tt».

(iii) The cutoff satisfies bt < 7mh (“strategic orwarding”) ift; > fz and ty > fz. Then,
1
es b € b} Tty | are active in the first period despite incurring a loss and active
p 1 P P g

again in the second if they were detected, or if they were not detected and b > 7t,.



(iv) The cutoff satisfies b} > mt| ( “strategic delay”) if t| > t and ty > tp. Then, types
b € [rt1,b}] delay their activity despite foregoing a gain in the first period and are
active in the second period, and types b > g} are active in the first period and active

again in the second if b > wt,.

Proposition [2] characterizes how forward-looking agents optimally condition their
activity on their types for any possible combination of transfers. Essentially, three cases
(corresponding to parts (i1)-(iv) of Proposition [2)) need to be distinguished.

First, if both second-period transfers are weakly higher than the transfer in the first
period, forward-looking agents behave as if they were myopic and the cutoff is equal to
the myopic level, b} = 7t; (“quasi-myopia”). That is, in either period agents are active
only if their instantaneous net benefit is weakly positiveﬁ Intuitively, agents cannot gain
from strategic forwarding if the transfer for previously active agents in the second period
exceeds the transfer for active agents in the first period. Similarly, agents cannot benefit
from strategic delay because there is no possibility of making up for the foregone benefit
in the second period if the transfer for first-time activity increases. Strategic behavior is
also excluded if the second-period transfers for previously non-active and active agents are
the same, since the surplus that can be obtained in the second period then does not depend
on first-period behavior and hence the activity decision in the second period is irrelevant
for the optimal first-period decision. In addition, since the second period is the final period
of the game, all agents behave myopically when facing second-period transfers. This case
is illustrated in panel (a) in

Second, if the second-period transfer for repeated activity is lower than the first-period
transfer, some agents may benefit from strategically being active in the first period to
self-select into the set of agents who face the transfer for repeated activity in the second
period. However, this will only occur if the transfer for repeated activity is lower than the
second-period transfer for first-time activity. The cutoff is then below the myopic level,
by < mty (“strategic forwarding”). This case is illustrated in panel (b) in

Third, if the transfer for first-time activity is falling over time, some agents have
an incentive to strategically delay their activity. However, this will only occur if the
second-period transfer for previously non-active agents is lower than the second-period

transfer for repeatedly active agents. In this case, the cutoff exceeds the myopic level,
by > mty (“strategic delay”), as illustrated in panel (c) in

®Myopic individual behavior, which refers to behavior that is not forward-looking, is sometimes also
called ‘naivety’ in the literature (e.g. inTaylor, 2004).
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Figure 2: Self-selection in period 1

Notes: The figure illustrates how agents optimally self-select in period 1 according to parts (ii)-(iv) of Proposition Panel (a) shows
the case of weakly increasing transfers. Panel (b) shows the case of decreasing transfers for active agents. Panel (c) shows the case of
decreasing transfers for non-active agents.

Next, we study how the principal optimally chooses the menu of transfers t, accounting
for self-selection by agents. In doing so, the principal may or may not be able to commit

to the menu of transfers at the beginning of period 1. We consider each case in turn.

3.1 Commitment

Suppose that the principal is able to commit to the full menu of transfers t = {r,2,,7,} at

the beginning of period 1. The principal then maximizes the following objective function

Q=0+ +Q)

b b

= | (mty —c)dZ(b)+ oc/ (b—mt1)dZ(b) 3)
by bt
szl [ ; b .
Ton /max{bmfz}(mz —c)dZ(b) + Ot/max{bmfz}(b — 1th)dZ(b) 4)

by

+6 [/bT (ntz—c)dZ(b)+a/

min{b},mtr } min{b}, 7t}

(b— ntz)dZ(b)] 5)

L 5(1—7) l/b (mz—c)dZ(b)Jra/b

max{bj,nt>} max{bj,nty}

(b— m2>dz<b>] G

where (3) is the surplus generated in period 1, (4) is the discounted second-period surplus

from repeatedly active agents, (5) is the discounted second-period surplus from true
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non-active agents, and (6) is the discounted second-period surplus from false non-active
agents. Note that, depending on the relative sizes of the transfers that the principal commits
to, the objective function allows for four different cases, which differ with respect to the
lower bounds of the respective integrals.

The next result establishes that under commitment it is optimal not to vary the transfers.

Proposition 3 (commitment). Suppose the principal can commit to the full menu of
transfers at the beginning of period 1. Then, she can do no better than set all transfers

equal to the optimal static transfer, that is, tf =t; =13 =1t*(c, W, @).

The result shows that the principal can do no better than achieve the optimal static
outcome in both periods: With commitment, it is optimal to set all transfers equal to the
optimal static transfer ¢*, irrespective of agents’ activityE] In the classic monopoly pricing
interpretation, Proposition [3] implies that it is optimal to charge the profit-maximizing

static monopoly price *(c,1,0) = c+ 1;553 ) to all consumers, which is in line with earlier

work on behavior-based price discrimination by Armstrong (2006) and |Fudenberg and!
Villas-Boas| (2007). In the canonical law enforcement interpretation, in turn, the result
implies that it is best to impose the static welfare-maximizing fine t*(c,7,1) = = on all
detected offenders. It is worth noting that constant transfers are not uniquely optimal.
Decreasing transfers for agents that are active in both periods may also be optimal if
they implement equal cutoffs b} = b3. In this case, only agents that are detected twice
benefit from the lower transfer in period 2, whereas previously non-detected agents pay
the optimal static transfer in period 2. This corresponds to case (iii) in Proposition [2]
Proposition [3| clarifies why the literature has struggled with explaining escalating
prices and fines. As long as the principal has commitment ability, the canonical models
in the respective strands of literature simply cannot generate escalation as an optimal
outcome. We next consider how the lack of commitment affects the principal’s incentive

to discriminate transfers.

3.2 Non-Commitment

Consider a setting in which the principal lacks commitment ability. Optimal transfers in
period 2 will then account for (i) the right-truncation of the set of previously non-active
agents, and (ii) the left-truncation of the set of previously active agents, as the cutoff

"The result is reminiscent of the classic finding that it is optimal not to price discriminate under
commitment if consumer types are fixed and all decision makers have the same discount factor (Stokey
1979, Hart and Tirole|[1988}, |Acquisti and Varian|2005} [Fudenberg and Villas-Boas|2007)).

10



in period 1, b}, separates the type set into non-active [b,b}] and active agents [b,b],
respectively. The following result shows the implications for the optimal setting of

transfers.

Lemma 1 (truncation). Suppose that the principal lacks commitment ability. Then, she
optimally sets the transfers such that strategic delay is the only way in which agents may
benefit from strategic behavior, and the cutoff satisfies by > Tt;.

The intuition behind Lemma (1| is as follows. Since the principal has no incentive
to leave any rent to the lowest type in the set of repeatedly active agents, and there are
additional benefits to be extracted from the set of previously non-active agents, it must
be that 75 > ;. Given these second-period transfers, Proposition 2| shows that agents will
either behave as if they were myopic (as in case (i1)) or strategically delay activity (as in
case (iv)), depending on the transfers chosen. Note that right-truncation at b} does not
eliminate all types b > b from the pool of previously non-active agents in period 2. The
reason is that a share (1 — ) of the agents with types b > b} who are active in period 1 go
undetected and thus end up in the pool of previously non-active agents. We now proceed

to characterizing optimal transfers in period 2.

3.2.1 Optimal Transfers in Period 2

We first consider the optimal second-period transfer for repeatedly active agents, £3. This
transfer must maximize the principal’s surplus generated from repeatedly active agents
with types b € [b7,b],

| — Z(nhy) 1 Z(nh) } -

iy = f — b — nt

help

where 7> = {ty : whp > bi} is the set of transfers for which the expected transfer for
repeatedly active agents (weakly) exceeds the cutoff b]. Our next result shows how the

optimal transfer is determined.

Proposition 4 (repeated activity). Suppose that the principal lacks commitment ability.
Then,

(i) if by < wt*(c,®, @), the optimal second-period transfer for repeatedly active agents
equals the optimal static transfer, t; = t*(c, 7, Q).

(ii) if by > nt*(c,m, &), the optimal second-period transfer for repeatedly active agents
keeps the cutoff constant, nt; = ZADE =bj.

11



Part (1) states that the optimal second-period transfer for repeatedly active agents
equals the optimal static transfer if the cutoff in period 1 is below the optimal static cutoff.
The intuition for this result is straightforward: since agents are myopic in period 2 and
the left-truncation at b7 does not prevent the principal from reaching the static optimum,
it is best to choose the optimal static transfer. This finding might suggest that escalation
occurs if the initial cutoff is lower than the static optimum. However, it cannot be optimal
for the authority to induce a cutoff b} below the static optimum, since this would induce
a loss that cannot be recouped in period 2. Henceforth, we therefore focus on the case
where b} exceeds the optimal static cutoffﬂ

Part (ii) of Proposition 4| demonstrates that if b} exceeds the optimal static cutoff, the
optimal second-period cutoff for repeatedly active agents must be equal to the cutoff from
period 1, b% = b}. That is, the optimal second-period transfer for repeatedly active agents
does not exclude any previously active agents. This result reflects Tirole’s (2016) insight
that the set of inframarginal types is invariant to left-truncation under positive selection.
At first glance, the result may seem surprising as cutoff invariance obtains even though
non-activity is not absorbing in our setting. Note, however, that the cutoff invariance result
holds only for repeatedly active agents with types above the cutoff level 5] who must
have been active in period 1 by construction. Therefore, non-activity is indeed absorbing
for repeatedly active agentsﬂ Non-activity is clearly not absorbing, though, for agents
with types below the cutoff level b]. Importantly, the result implies that the common
notion that transfers for repeatedly active agents should be escalating because of their
(revealed) higher types is not correct. In a fixed economic environment with a continuous
type distribution, the principal cannot gain from excluding previously active agents in
period 2.

Next, we determine the optimal period-2 transfer for previously non-active agents, ¢5.
This transfer maximizes the principal’s surplus generated from true non-active agents with
types b € [mt,,b?] and false non-active agents with types b € [b%,b] that were active in
period 1 but went undetected,

bi bi
Qs (ty:h', 7, 0) — / " (an—c)az(b) + o / (b m)az(b) ®)
+ (1-7) [ /b f(ntz—c)dz(b)+oz /b f(b—mz)dz(b) .

8Mueller and Schmitz (2015) analyze an offender model in which the initial fines for first-time offenders
are exogenously restricted.

Put differently, agents cannot self-select into the set of repeatedly active agents after non-activity in
period 1.
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The next result shows that the optimal transfer for previously non-active agents in
period 2 is lower than the optimal static transfer if the principal gives less than full weight
to agent benefits.

Proposition 5 (one-time activity). Suppose that the principal lacks commitment ability.
Then,

(i) if the principal maximizes welfare, o« = 1, the optimal second-period transfer for

previously non-active agents keeps the cutoff constant, wt; = b5 = b} = c.

(ii) if the principal gives less than full weight to agent benefits, o0 < 1, the optimal

second-period transfer for previously non-active agents satisfies Tt; < bj.

Two comments are in order. First, if the principal gives full weight to agents benefits
(a = 1), the optimal transfer for previously non-active agents in period 2 equals the
standard welfare-maximizing transfer, t; = ¢ /. This result follows since standard welfare
maximization forces the expected transfer down to the cost of the activity. Second, if
the principal gives less than full weight to agents benefits (¢ < 1), the optimal expected
transfer for previously non-active agents in period 2 is lower than the first-period cutoff.
The intuition for this result is straightforward: for any first-period cutoff above the cost of
the activity, the principal can gain from lowering the transfer, thereby generating additional

transfer payments.

3.2.2 Establishing Escalation

We now establish the conditions under which escalation emerges endogenously in the
unified framework. Our key result follows immediately from combining the insights from

Propositions 2-5.

Proposition 6 (escalation). Optimal transfers for repeatedly active agents escalate if and
only if the principal lacks commitment ability and gives less than full weight a < 1 to
agent benefits. Optimal transfers for previously non-active agents then fall over time, and
transfers are chosen such that

t >t >t). 9)

The result clarifies that two conditions need to be satisfied for escalating transfers to
be optimal. First, the principal must lack commitment ability, which prevents her from

committing to constant transfers that would yield the highest possible surplus. Second,

13



the principal must give less than full weight to agent benefits, such that optimal transfers
do not simply maximize standard welfare in each period.

Proposition [6] highlights that escalating transfers for repeatedly active agents (if any)
follow from the principal’s incentive to lower the transfer for previously non-active agents.
The prospect of a decreasing transfer induces some agents to strategically delay their
activity, which in turn drives a wedge between the expected transfer 7¢; and the cutoff b} in
period 1. This is illustrated in panel (a) of Figure 3] The wedge that these delaying agents
cause gives rise to escalation, 73 > t;, because by Proposition the cutoff is invariant from
period 1 to period 2, b = w75, which is illustrated in panel (b) of Figure 3| In contrast, if
there is no wedge between the expected transfer and the cutoff, 7t = b7, cutoff invariance

yields constant transfers 7wt} = 7.

b b
active agents repeatedly active agents

e e

delaying agents
active agents

b} \\./ .............................. ﬂf; /

non-active agents

e

*
7/ SR R ——

1-Z(b) 1-2(b)
(a): period 1 (b): period 2

Figure 3: Dynamic model without commitment

Notes: The figure illustrates the optimal transfers and induced inter-temporal cutoff when the principal lacks commitment ability.
Panel (a) depicts the first period and shows the wedge between cutoff and expected transfer that delaying agents cause. Panel (b)
depicts the second period and shows the resulting escalation in transfers for repeatedly active agents.

The intuition for this result is as follows: If the principal gives full weight to agent
benefits, transfer payments are irrelevant for the principal’s surplus, and optimal expected
transfers simply reflect the (constant) cost of the activity. There is thus no incentive to
lower the transfer for one-time active agents. However, if less than full weight is given to
agent benefits, the benefit extraction motive kicks in and the principal has an incentive to
lower the transfer.
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4 Examples

We now illustrate how our framework can be applied to derive closed-form solutions for
optimal transfers in three different (but inherently related) settings that have been analyzed
in the literature. Throughout, we assume that agent benefits are uniformly distributed on
[0,1].

4.1 Behavior-Based Monopoly Pricing

Consider the case of behavior-based monopoly pricing as analyzed by Armstrong (2006,
pp. 6) and Fudenberg and Villas-Boas| (2007, pp. 8). In this setting, the principal gives
no weight to agent benefits (a = 0), the detection probability is one (7 = 1), and cost is

normalized to zero (¢ = 0). The objective function then simplifies to

I1=1II, + 5(ﬁ2+H2)
— 11(1 = bY) + 8[H(1 — max{bl,5}) +12(b% — min{b, 1)),

where the objective function is now denoted by IT instead of Q. We first consider the case

where the monopoly can commit. Applying Propositions[I]and [3] we immediately have
ok ok k1

thattf =15 =1, =t* = 5.

Next, if the monopoly lacks commitment ability, the price for repeat consumers in
period 2 is 75 =1* = % if bY <r* and 73 = b} if b} > t* by Proposition @ The price for
first-time consumers in period 2 must account for right-truncation and is given by #; = %b‘f
by Proposition [5| Using these prices, it is straightforward to solve the indifference
condition for the cutoff bj(#;) = (2¢;)/(2 — 0). Maximizing over #; then yields the

profit-maximizing prices (Armstrong}, 2006)

., 487 . 2486, 2456

"T2ate) 2T 2@te) 2T (@te)

That is, the monopoly charges escalating prices for repeat consumers (5 > t{ > ) if it
lacks commitment ability, because it cannot resist the temptation to lower the price for
first-time consumers in period 2.

This model of behavior-based monopoly pricing can be extend to allow for imperfect
detection of consumption (7 < 1). First, imperfect detection leaves both the commitment
solution (i.e., constant prices at the static optimal level) and the optimal transfer for repeat
consumers in the absence of principal commitment (i.e., expected price at the cutoff)

unaffected. Second, in the presence of previously non-active agents in the market in the
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second period, the monopolist continues to lower the price, yielding escalation. Hence,

the mechanics of the analysis are unaffected by the detection probability.

4.2 Monopoly Pricing with Positive Selection

In a recent paper, [Tirole (2016) analyzes dynamic monopoly pricing and mechanism
design with positive selection, assuming that consumers can consume in future periods
only if they have consumed in all previous periods (“absorbing exit””). We consider the
basic pricing case where the principal gives no weight to agent benefits (¢ = 0), the
detection probability is one (7 = 1), and cost is given by ¢ > 0. The objective function

then simplifies to

I1=1I,; +5ﬁ2
=(ty —c)(1=b7)+ 8(f» — ¢)(1 —max{b},i2}).

With commitment, applying Propositions[1|and [3|immediately yields 1} =5 =75 =
= lzi More interestingly, optimal prices are constant even if the monopolist lacks
commitment ability. To understand the intuition for this result, note that the assumption of
absorbing exit eliminates the surplus from previously non-active consumers in period 2
from the objective function. The monopolist therefore has no incentive to lower the
price for these consumers. Instead, she focuses on the surplus from repeat consumers,
which is maximized at optimal static prices #{ = f; = t* = b]. This is in line with the
cutoff invariance result of Proposition 4 Hence under positive selection, the ability of the
principal to commit is irrelevant (Tirole, |[2016).

Note that allowing for imperfect detection of consumption (7 < 1) is inconsequential
in the positive selection setting. Since exit is absorbing by assumption, the seller knows
that the benefit of any consumer who is still active in period 2 must exceed the first-period
cutoff. That is, irrespective of the detected first-period purchase behavior, any buyer in
period 2 is a repeat buyer by construction.

4.3 Optimal Law Enforcement

The canonical model of optimal law enforcement pioneered by Becker (1968) and studied

extensively in Polinsky and Shavell| (2007)) assumes that the principal maximizes standard

16



welfare (oo = 1) and detects offenses that generate social harm ¢ with probability & € (0, 1].
The objective function then simplifies to

W =W +8(Wr+ W)
— (b—e)(1-b})
+8m(b—c)(1 —max{b},whH})
+6(b—c)(b] —min{b],7f2})
+8(1—m)(b—c)(1 —max{b},nf}),

where the objective function is now denoted by W instead of Q. With commitment,
applying Propositionsandimmediately yields tj =15 =5 =t* = 7. More interestingly,
the same result holds without commitment, as the principal can do no better than set all
expected fines equal to cost, which induces all agents with b > ¢ (“efficient offenders”) to
be active in each periodm However, if o < 1, the non-discrimination result breaks down,
and the principal will optimally set escalating fines if she lacks commitment ability. Note
that the mechanism driving these results does not rely on uncertain detection (7 < 1).

5 Discussion

Our analysis shows that escalation is driven by decreasing transfers for non-active agents
rather than increasing transfers for active agents in a fixed economic environment. We now
discuss how exogenous changes in the environment and heterogenous discount factors
affect this finding.

It should not come as a surprise that exogenous changes in the environment may
directly affect the optimal structure of transfers. For instance, if the cost of repeatedly
active agents increases from period 1 to period 2, escalation emerges as an optimal
outcome even with commitment if @ < 1. More interestingly, if the cost of previously
non-active agents in period 2 is larger than the cutoff in period 1, the principal no longer
has an incentive to lower the transfer, which eliminates the commitment problem. A lower
detection probability for repeatedly active agents, in turn, induces the principal to increase
the transfer for active agents irrespective of commitment if she gives less than full weight
to agent benefits. In contrast, if she gives full weight to agent benefits, compensating the

fall in expected transfer payments is not uniquely optimal. This follows because transfer

10Note that this result does not depend on the assumption of a uniform distribution. Under welfare
maximization (o = 1), the optimal static transfer can be determined without knowledge of the distribution.
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payments are welfare-neutral in this case and there is no incentive to exclude previously
active agents.

The effects of introducing heterogenous discount factors between the principal and
agents are more subtle. With heterogenous discount factors, a given surplus arising in
period 2 is valued differently by the principal and agents in period 1. This suggests that
it may be beneficial for the principal to shift agent benefits from one period to the other,
while keeping their overall benefit constant. That is, when the principal is more patient
than agents, Op > 04, she has an incentive to backload transfers, whereas, if she is less
patient, 5p < 4, she has an incentive to frontload transfers. However, the agents’ inability
to commit prevents the principal from backloading transfers. Nonetheless, escalation will
occur even with principal commitment when the agents’ discount factor is sufficiently
small. In this case, agents essentially behave as if they were myopic, such that there is
little (if any) loss for the principal from the strategic behavior of forward-looking agents in
period 1. The non-discrimination result from Proposition 3| then collapses, and it becomes
optimal for the principal to increase the transfer for active agents and decrease the transfer

for non-active agents irrespective of commitment.

6 Conclusion

This paper provided a consistent explanation for escalating prices and fines, using a unified
analytical framework that nests monopoly pricing and optimal law enforcement (among
other settings) as special cases. Our analysis suggests that escalation emerges as an
optimal outcome if and only if the principal (i) lacks commitment ability, and (ii) gives
less than full weight to agent benefits.

They key insight of our analysis is that escalation is driven by decreasing transfers for
non-active agents rather than increasing transfers for active agents. We suspect that this
result is inconsistent with the prima facie intuition of many people (it was at least with
ours). It nicely reflects, however, the “curse” of positive selection suggested by Tirole
(2016)’s analysis: In a fixed economic environment with a continuous distribution of agent
types, it is simply not optimal for the principal to exclude previously active agents.

Our analysis suggests various avenues for future research. First, one could extend the
setting to an infinite number of periods. Second, one might examine how competition
among sellers affects the scope for escalating pricing schemes. Third, it would be interest-
ing to provide systematic empirical evidence on escalating fines and prices. We hope to
address these issues in future research.

18



Appendix

Proof of Proposition[l| Using Leibniz’s rule, differentiating Q(z; ¢, 7, o) with respect to 7 yields
the first-order condition

(1—a)[(1 - Z(me*)] — (mt* — ¢)z(me*) = 0.

Solving for ¢* yields the optimal static transfer *(c, 7, o). The comparative-statics effect of an
increase in o on *(c, , &) is readily determined by applying the implicit function theorem to the
first-order condition and noting that the cross-partial derivative satisfies Q;q = —[1 — Z(7z)] <
0. O

Proof of Proposition 2] First, note that the unique cutoff in the first period is determined by the
indifference condition b — xt; 4+ 8 [ (b — ntp) + (1 — ) (b — ntp)] = 8 (b — 7ty ), where each payoff
in the second period is bounded below by zero, as agents may always choose the outside option.

‘We now consider each statement in turn.

(i) Types b < rmin{t} make a loss from being active in either period and facing any transfer

and hence are never active.

(i) If7r; <min{z,5}, types b < mt; will never be active by (i), while types b € (7t;, xmin{fp,1,})
face a loss from being active in period 2 and hence choose the outside option, irrespective
of first-period behavior. The indifference condition then simplifies to b} — 7ty = 0, which
immediately implies b} = 7t;. Similarly, t, = #, implies that the indifference conditions

simplifies to b} = 7t;.

(iii) If 7, > f, types b > mt; face a gain in the second period if they were detected in the
first period and face either a loss (and take the outside option) or a gain in the second
period if they were not detected. In the first case, the indifference condition simplifies
to b — mt) + 6m(b — mip) = 0 which yields b} < mz). In the second case, the indifference
condition solves for b} = (t; + 87(fy — 1)), which yields b} < 7ty if tp > f.

@iv) If 4 > 1y, types b > mt; face a gain in the second period if they were not detected and
face either a gain or loss (and take the outside option) in the second period if they were
detected. In the first case, the indifference condition solves for b} = 7(t; + 67 (fr —12)),
which yields b} > 7ty when f» > 1. In the second case, the indifference condition simplifies
to b — mty — 87 (b — mty) = 0, which yields b} > t;.

O

Proof of Proposition 3] Suppose that b} > mt*, which holds in equilibrium. Then, it cannot be

optimal for the principal to commit to a transfer 7, such that 77, > bj. Similarly, the principal
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cannot gain from comitting to some 7, > by relative to mt, < b]. The objective function thus

simplifies to

b b

o= [ (m—c)dz(b)+a / (b—71)dZ(b)
b b

b

bi

+on [ /b f(m} —O)dZ(b) + / (b— m})dZ(b)]
v 5 [/bT(mz—c)dZ(b)—i—a/bT(

B o mz)a’Z(b)}
+8(1-7) [/j(mz —c)dz(b) +oc/£

(b— mz)dZ(b)] .
i b;

Rewriting this objective function (by collecting terms and splitting up the period-2 surplus from

agents that are active in period 2 only) yields

Q= :(ml —c+57r(7rf2—c))dz(b)+a/}j(b—m1 +0n(b— mty))dZ(b)
+6 [/b (mz—c)dZ(c)+a/E

(b— ntz)dZ(b)]
b b

_s [/bb(ﬂtz—c)dz(b)+a/

* *
1 bl

(b— mz)dZ(b)}

+5(1—7) [ /;, f(m2 —O)dZ(b) + /h f(b _ mz)dZ(b)]
= :(ml —c+0n(niy—c)— 6n(nt, —¢))dZ(b)

to /b f(b ) + 87(b— 7ihy) — 7(b— 712))dZ (D)
+5 [ / f (1> — ¢)dZ(b) + / f (b— mz)dZ(b)}
b 2 b 2
— [ bt —c)az(b) + / (b—b})dZ(b)
b; bi
+5 [/b (ﬂtz—c)dZ(g)+a/b

Tty b(15)

(b— ntz)dZ(b)} ,
where the last step follows from noting that the indifference condition
by — nty + dwmax{0,b] — nir} + 6 (1 — w) max{0,b] — 7t} = S max{0,b] — 7t, }

solves for
b} = n(ty — dnty + Snty). (A1)
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Now we can see that the first term is maximized at b = 7t*, while the second term is maximized
at ) = mt*. Using , it follows that 1| = t, = #, = t* maximizes the principal’s objective
function under commitment and implements b} = 7t* > 7t*.

Now suppose that b7 < 7t*. As before the principal cannot gain from committing to some
7ty > b}, such that the third and fourth term of the objective function remain unchanged. The
second term changes, however, as the lower bound of the integral increases to 7, > b}. Analogous
calculations then show that the principal obtains a strictly smaller surplus compared to the case
where b} > 7t*. ]

Proof of Lemmal(l] For the left-truncated set of agents that are active in both periods, | ’{,1_7],
the principal can do no better than leave no rent to the lowest type, hence 77y > bj. For the
set of previously non-active agents, the principal can do no better than set #; such that 7z; < b7.
Therefore, we must have that either 75 > 5 or 73 = 5. By Proposition [2| agents then cannot benefit
from strategic forwarding and hence b} > 7t;. ]

Proof of Proposition 4| We consider both statements in turn.

(i) For b} < mt*(c,m, o), it is optimal for the principal to set f; = t*(c, 7, &) by Proposition|i]
as agent behavior is myopic in period 2.

(ii) For b} > mt*(c, 7, o), the surplus in (7) is maximized at the lower bound after left-truncation,
it = by = b

Proof of Proposition 5| We consider both statements in turn.

(i) For ¢ = 1, all agents with b > ¢ must be active to maximize welfare. In period 2, this
requires that #; = ¢/%t =1*(c, w, 0 = 1) = f3. Proposition 2] then implies that b} = 7z}, and
by Proposition we know that b} = zf;, which implies 1 = ¢ /7.

(ii) For @ < 1, we must have b > c, as it cannot be optimal to chose transfers that yield b} = c.
Similarly, b} < b holds by construction. The principal can then gain from lowering the

expected transfer for previously non-active agents below the cutoff, ¢ < 7t; < bj.
O

Proof of Proposition [6] Proposition 3] shows that escalation is not optimal under commitment and
thus establishes the necessity of non-commitment. Similarly, Proposition [5]shows that optimal
transfers under non-commitment are constant with & = 1, which establishes the necessity of a < 1.
To establish sufficiency, note that Proposition [5|demonstrates that when o < 1 and the principal

lacks commitment, #; < b}, while Proposition@ shows that 7f; € [b}, b], which immediately implies
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that ; < 7;. Then by Proposition [2|(some) agents strategically delay their activity, b} > mz{, and
t] > t;, which yields the result.
O]

22



References

Acquisti, A. and Varian, H. R. (2005). Conditioning prices on purchase history. Marketing
Science 24(3), 367-381.

Anderson, L. R., DeAngelo, G., Emons, W., Freeborn, B. and Lang, H. (2017). Penalty
structures and deterrence in a two-stage model: Experimental evidence. Economic
Inquiry 55(4), 1833-1867.

Armstrong, M. (2006). Advances in Economics and Econometrics: Theory and Applica-
tions: Ninth World Congress: volume II, Cambridge University Press, chap. Recent

developments in the economics of price discrimination.

Baik, K. H. and Kim, I.-G. (2001). Optimal punishment when individuals may learn

deviant values. International Review of Law and Economics 21(3), 271-285.

Becker, G. (1968). Crime and punishment: An economic approach. Journal of Political
Economy 76, 169.

Belleflamme, P. and Vergote, W. (2016). Monopoly price discrimination and privacy: The
hidden cost of hiding. Economics Letters 149, 141-144.

Buehler, S., Halbheer, D. and Lechner, M. (2017). Payment evasion. Journal of Industrial
Economics 65(4), 804-832.

Cabral, L., Salant, D. and Woroch, G. (1999). Monopoly pricing with network externalities.
International Journal of Industrial Organization 17(2), 199-214.

Chu, C. Y. C, Hu, S. and Huang, T. (2000). Punishing repeat offenders more severely.
International Review of Law and Economics 20(1), 127-140.

Coase, R. (1972). Durability and monopoly. Journal of Law and Economics 15(1),
143-49.

Conitzer, V., Taylor, C. and Wagman, L. (2012). Hide and seek: Costly consumer privacy
in a market with repeat purchases. Marketing Science 31(2), 277-292.

Dana, D. A. (2001). Rethinking the puzzle of escalating penalties. Yale Law Journal
110(5), 733-783.

23



Emons, W. (2007). Escalating penalties for repeat offenders. International Review of Law
and Economics 27(2), 170-178.

Endres, A. and Rundshagen, B. (2016). Optimal penalties for repeat offenders—the role
of offence history. BE Journal of Theoretical Economics 16(2), 545-578.

Freixas, X., Guesnerie, R. and Tirole, J. (1985). Planning under incomplete information
and the ratchet effect. The Review of Economic Studies 52(2), 173—-191.

Fudenberg, D., Levine, D. K. and Tirole, J. (1985). Infinite-Horizon Models of Bargaining
with One-Sided Incomplete Information, Cambridge, UK and New York, Cambridge
University Press. 73-98.

Fudenberg, D. and Villas-Boas, J. M. (2007). Behavior-Based Price Discrimination and

Customer Recognition, Oxford, Elsevier Science.

Funk, P. (2004). On the effective use of stigma as a crime-deterrent. European Economic
Review 48(4), 715-728.

Garoupa, N. and Klerman, D. (2002). Optimal law enforcement with a rent-seeking

government. American Law and Economics Review 4(1), 116-140.

Gneezy, U. and Rustichini, A. (2000). A fine is a price. The Journal of Legal Studies
29(1), 1-17.

Hart, O. D. and Tirole, J. (1988). Contract renegotiation and coasian dynamics. The
Review of Economic Studies 55(4), 509-540.

Hylton, K. (2005). The theory of penalties and the economics of criminal law. Review of
Law and Economics 1, 175-201.

Lewin, J. L. and Trumbull, W. N. (1990). The social value of crime? International Review
of Law and Economics 10(3), 271-284.

van der Made, A. (2019). Graduated punishments in public good games. Southern
Economic Journal 85(3), 939-959.

Miceli, T. J. (2013). Escalating penalties for repeat offenders: Why are they so hard to
explain? Journal of Institutional and Theoretical Economics 168(4), 587—604.

24



Miceli, T. J. and Bucci, C. (2005). A simple theory of increasing penalties for repeat
offenders. Review of Law and Economics 1(1), 71-80.

Mueller, D. and Schmitz, P. (2015). Overdeterrence of repeat offenders when penalties for
first-time offenders are restricted. Economics Letters 129, 116-120.

Mungan, M. C. (2009). Repeat offenders: If they learn we punish them more severely.
International Review of Law and Economics 30(2), 173-177.

Polinsky, A. M. and Rubinfeld, D. L. (1991). A model of optimal fines for repeat offenders.
Journal of Public Economics 46, 291-306.

Polinsky, A. M. and Shavell, S. (1998). On offense history and the theory of deterrence.

International Review of Law and Economics 18, 305-324.

Polinsky, A. M. and Shavell, S. (2007). Handbook of Law and Economics, Elsevier, Vol. 1,
chap. The Theory of Public Enforcement of Law. 1 ed.

Posner, R. A. (2007). Economic Analysis of Law. Aspen Publishers, 7 ed.

Rasmusen, E. (1996). Stigma and self-fulfilling expectations of criminality. Journal of
Law & Economics 39(2), 519-543.

Rubinstein, A. (1979). Applied Game Theory, Physica-Verlag HD, chap. An Optimal
Conviction Policy for Offenses that May Have Been Committed by Accident. 406—413.

Stigler, G. J. (1974). Essays in the Economics of Crime and Punishment, National Bureau

of Economic Research, Inc, chap. The Optimum Enforcement of Laws. 55-67.

Stokey, N. L. (1979). Intertemporal price discrimination. The Quarterly Journal of
Economics 93(3), 355-371.

Taylor, C. R. (2004). Consumer privacy and the market for customer information. 7The
Rand Journal of Economics 35(4), 631-650.

Tirole, J. (2016). From bottom of the barrel to cream of the crop: Sequential screening
with positive selection. Econometrica 84(4), 1291-1343.

Villas-Boas, J. M. (2004). Price cycles in markets with customer recognition. RAND
Journal of Economics 35(3), 486-501.

25



	Introduction
	Static Model
	Dynamic Model
	Commitment
	Non-Commitment
	Optimal Transfers in Period 2
	Establishing Escalation


	Examples
	Behavior-Based Monopoly Pricing
	Monopoly Pricing with Positive Selection
	Optimal Law Enforcement

	Discussion
	Conclusion

